MTE

E Meter Test Equipment

HYDROCAL 1003 Offshore

Transformator Online-Monitoring System mit Gas in Öl Analyse und Ölfeuchte Messung für Offshore Windkraft Anwendungen

Die Messung und Analyse der im Transformatoröl gelösten Gase sind allgemein als wohl sicherstes Verfahren zur frühzeitigen Erkennung von Transformatorschäden anerkannt.

Darüber hinaus beeinflussen Wasseranteile im Transformatoröl dessen Isolationseigenschaften und Korrosions- und Überhitzungsrisiken werden verstärkt. Dieses gilt insbesondere, wenn das gelöste Wasser den Sättigungspunkt erreicht und freie Wasseranteile entstehen.

Neben regelmässigen gaschromatographischen Untersuchungen des Isolieröls gewinnen Online-Monitoring-Systeme weltweit mehr und mehr an Bedeutung.

Durch die Online-Überwachung der wichtigsten Fehlergase, wie Wasserstoff (H_2) und Kohlenmonoxid (CO) sowie die Ölfeuchte (H_2O) , kann ein zusätzliches Potential für Kostenreduzierungen und Sicherheitsverbesserungen erschlossen werden.

Vorteile und Besonderheiten

- Individuelle Bestimmung der im Öl gelösten Gasanteile von Wasserstoff (H₂) und Kohlenmonoxid (CO)
- Messung der im Transformatoröl gelösten Ölfeuchte (H₂O) (relativ [%] und absolut [ppm])

- Spezialausführung für Offshore Windpark Anwendungen:
 - Gehäuse ohne Fenster mit C5M lackiert
 - Rückwand mit zwei Kabelverschraubungen M20 (Chromnickelstahl, IP 55, Korrosions- und Säurebeständig). Optional mit 4 Kabelverschraubungen (2x M20 und 2 x M25).
 - Rückwand, Öleinlass und Verschlussschrauben sind aus rostsicheren V4A Stahl gefertigt
- Einfache Installation an einem Transformatorventil (G 1½" DIN ISO 228-1 oder 1½" NPT ANSI B 1.20.1)
- Installation am laufenden Transformator, ohne diesen ausser Betrieb setzen zu müssen
- Fortschrittliche Software (am Gerät und via PC)
- Wartungsfreies Messgerät
- Kommunikationsschnittstellen ETHERNET (Option) 10/100
 Mbit/s (Kupferleiter / RJ 45 oder Lichtwellenleiter / SC Duplex),
 RS 232 und RS 485 um eigene Übertragungsprotokolle zu
 unterstützen und um für die Anbindung von Unterstationen
 mittels Kommunikationsprotokollen nach IEC 61850,
 MODBUS® RTU/ASCII und DNP3 offen / vorbereitet zu sein
- Optionales DNP3 Modem seriell für die SCADA-Anbindung
- Optionales IEC 61850 Modem seriell f
 ür die SCADA-Anbindung

Transformator-Überwachung Funktionen

Spannungen und Ströme

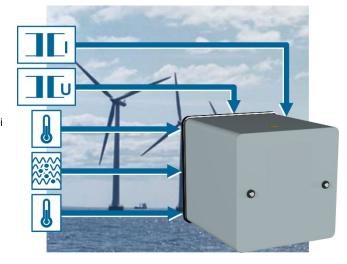
(über Spannungs- und Stromwandler / Signalumformer)

Temperatur Überwachung

Untere und obere Öltemperatur, Umgebungstemperatur (über zusätzliche Temperatursensoren)

Kühlstufen / Stufenschalter Position

(z.B. mittels Strommessumformer)


Freie Konfiguration

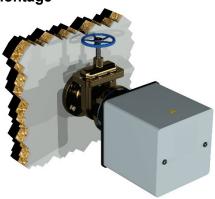
Analoge Eingänge können jedem zusätzlichem Sensor frei zugewiesen werden

Weitere Berechnungen:

Heisspunkt
Lebensdauerverbrauch
Alterungsrate

Gemeinsame
Entwicklung mit
PAUWELS Belgien

Kommunikation


RS 232 (Standard)

- Über integrierte RS 232 Schnittstelle
- Vor-Ort, z.B. mit einem Notebook mittels proprietärem Protokoll

RS 485 (Standard)

- Bus- oder Punkt zu Punkt Betrieb
- MODBUS® RTU/ASCII oder proprietäres Protokoll
- Buslänge bis zu 1000 m
- Kommunikation mit bis zu 31 HYDROCAL Geräten
- Konfiguration mittels interner Firmware oder PC Software HYDROSOFT

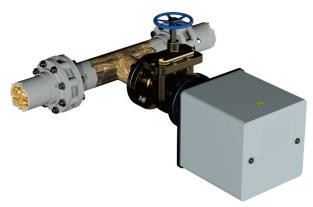
Geräte Montage

Transformator ohne Kühlsystem

Montage des HYDROCAL 1003 Offshore Gerätes an einem Ventil / Schieber am Transformator-Kessel.

Nutzung der natürlichen Ölzirkulation im Transformator für den kontinuierlichen Ölaustausch an der Membrane.

Analog Modem (Option)


- On-board Analog Modem mit Anschlusskabel 15m
- Proprietäres Protokoll

ETHERNET Modem (Option)

- Internes ETHERNET 10/100 Mbit/s Kommunikationsmodem (Kupferleiter / RJ45 oder Lichtleiter / SC Duplex)
- IEC 61850 (vorbereitet) oder Proprietäres Protokoll

DNP3 Modem (Option)

- Internes DNP3 seriell Modem mit RS 485 Schnittstelle
- DNP3 Protokoll

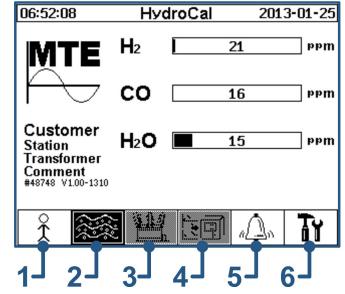
Transformator mit Kühlsystem

Das HYDROCAL 1003 Offshore Gerät wird an einem Ventil / Schieber am T-Stück der Rückleitung des Kühlsystems montiert. Die durch das Kühlsystem erzeugte Ölzirkulation sorgt für den kontinuierlichen Ölaustausch an der Membrane.

HYDROCAL Firmware Hauptmenü

1 Kundendaten

- Kunde
- Station
- Transformator
- Bemerkung


2 Gas in Öl Messwerte

- Balkendiagramm
- Graphischer Zeitverlauf
- Tabellendarstellung

3 Transformator spezifische Messwerte

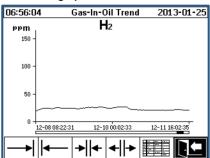
- Graphischer Zeitverlauf
- Tabellendarstellung
- •

(noch nicht verfügbar)

4 Messwerte zusätzliche Sensoren

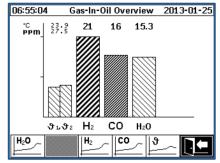
- Graphischer Zeitverlauf
- Tabellendarstellung

(noch nicht verfügbar)


Alarm / Alarmhistorie

- Alarmübersicht
- Alarmquittierung

6 Geräte-Einstellungen


- Alarm Einstellungen
- Kommunikationseinstellungen
- Transformator Einstellungen
- Ein- und Ausgänge Einstellungen

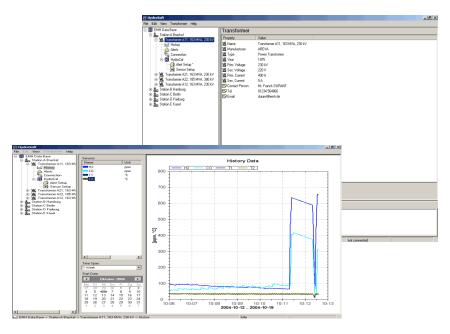
Gas in Öl - graphischer Zeitverlauf


Der Messwert, in diesem Fall Wasserstoff (H_2) , wird als graphischer Zeitverlauf dargestellt.

Gas in Öl - Balkendiagramm

Balkendiagram für Wasserstoff (H_2) , Kohlenmonoxid (CO), Ölfeuchte (H_2O) und Temperaturen

Alarm-Übersicht



Anzeige der konfigurierten Alarme und deren aktueller Status wird in Form einer Tabelle dargestellt.

HydroSoft PC-Software

Programm Hauptfunktionen

- Konfiguration und Verwaltung der einzelnen HYDROCAL Geräte mittel HydroSoft
- Auslesung der gespeicherten HYDROCAL Daten und Konfiguration
- Aufbereitung und Darstellung der ausgelesenen Daten (Graphischer Zeitverlauf oder Tabelle)
- Weiterverarbeitung der aufbereiteten Daten (Excel, CSV, Zwischenspeicher und Drucken)
- Speicherung und Archivierung der aufbereiteten Daten und der Konfiguration
- Automatische Datenauslesung und Alarmierung per E-Mail

Technische Daten HYDROCAL 1003 Offshore

Allgemein

Betriebsspannung: 120 V -20% +15% AC 50/60 Hz ¹) oder 230 V -20% +15% AC 50/60 Hz ¹) oder 120 V -20% +15% DC ¹) oder

230 V -20% +15% DC ¹⁾ ode

Andere Betriebsspannungen auf Anfrage!
Leistungsaufnahme: max. 200 VA

Gehäuse: Aluminium mit C5M Lackierung /

rostsicheren V4A Stahl B 224 x H 224 x T 307.5 mm

 Abmessungen:
 B 224 x H 224 x

 Gewicht:
 ca. 9.0 kg

 Betriebstemperatur:
 -50°C ... +55°C

(Umgebung) (unter -10°C Anzeige Funktion verriegelt)

Öltemperatur: -20°C ... +90°C

(im Transformator)

Lagertemperatur: -20°C ... +65°C

(Umgebung)

Öldruck: bis 800 kpa (kein Unterdruck zulässig)

Ventilanschluss: G 1½" DIN ISO 228-1

oder

11/2" NPT ANSI B 1.20.1

Sicherheit (€

Schutzisoliert: IEC 61010-1 Schutzart: IP-55

Messungen

Gas/Feuchte in Öl Messungen		Genauigkeit ^{2) 3)}	
Messgrösse	Bereich	Genaugkeit 7-7	
Wasserstoff H ₂	0 2.000 ppm	± 15 % ± 25 ppm	
Kohlenmonoxid CO	0 2.000 ppm	± 20 % ± 25 ppm	
Feuchte H ₂ O (aw)	0 100 %	± 3 %	
Feuchte in Mineralöl	0 100 ppm	± 3 %± 3 ppm	
Feuchte in synt. Ester5)	0 2.000 ppm	± 3 % of MSC ⁶⁾	

⁵⁾Optional ⁶⁾ Feuchtigkeitssättigungsgehalt

Arbeitsprinzip

- Diffusionsprinzip mit gasdurchlässiger TEFLON Membrane
- Mikroelektronische Gassensoren für H₂ Messung
- Elektro-Chemische Messzelle für CO Messung
- Kapazitiver Dünnfilm-Feuchtesensor für H₂O Messung (Relativ [%] und Absolut [ppm])
- Temperatursensoren (Öltemperatur, Gastemperatur, Rückwandtemperatur)

Analoge Ausgänge

4 x Analoge DC Ausgänge		Hauptfunktionen	
Тур	Bereich	(Freie Zuweisung)	
1 x Strom DC	0/4 20 mADC	Wasserstoff H ₂	
1 x Strom DC	0/4 20 mADC	Ölfeuchte H ₂ O	
1 x Strom DC	0/4 20 mADC		
1 x Strom DC	0/4 20 mADC	Kohlenmonoxid CO	

Digitale Ausgänge

12 x Digitale Ausgänge		Max. Schaltleistung	
Тур	Steuerspannung	(Freie Zuweisung)	
4 x Relais	12 VDC	220 VDC/VAC / 2 A / 60 W	
8 x Optokoppler	5 VDC	U _{CE} : 24 V Nenn / 35 V max. U _{EC} : 7 V max. I _{CE} : 40 mA max.	

Analoge Eingänge

	J -		
8 x Analoge DC Eingänge		Genauigkeit	Bemerkung
Тур	Bereich	des Messwerts	
4 x Strom DC oder 4 x Spannung DC	0/4 20 mA +20% oder 0 10 V +20%	≤ 1.0 %	Konfigurierbar mittels Jumper ⁴⁾
4 x Strom DC	0/4 20 mA	≤ 0.5 %	

Kommunikation

- RS 232 Serielle Schnittstelle mit externem Anschluss (Proprietäres oder MODBUS® RTU/ASCII Protokoll)
- RS 485 (Proprietäres oder MODBUS® RTU/ASCII Protokoll)
- ETHERNET 10/100 Mbit/s Modem (Option) Kupferleiter / RJ45 oder Lichtleiter / SC Duplex Anschluss (Proprietäres Protokoll)
- Analog Modem (Option) (Proprietäres Protokoll)
- DNP3 seriell Modem (Option) RS 485 Anschluss (DNP3 Protokoll)
- IEC 61850 Modem seriell für die SCADA-Anbindung (Option)

Bemerkungen

1) 120 V ⇒ 120 V -20% = 96 V_{min} 230 V ⇒ 230 V -20% = 184 V_{min} 120 V +15% = 138 V_{max} 230 V +15% = 264 V_{max}

- ²⁾ In Bezug auf Umgebungstemperatur +20°C und Öltemperatur +55°C
- ³⁾ Genauigkeit der Ölfeuchte für mineralische Öl-Typen
- 4) Standard Konfiguration Jumper ab Werk: Strom

